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ABSTRACT
Next-generation wireless networks are expect-

ed to support extremely high data rates and 
radically new applications, which require a new 
wireless radio technology paradigm. The chal-
lenge is that of assisting the radio in intelligent 
adaptive learning and decision making, so that 
the diverse requirements of next-generation wire-
less networks can be satisfied. Machine learning 
is one of the most promising artificial intelligence 
tools, conceived to support smart radio terminals. 
Future smart 5G mobile terminals are expected 
to autonomously access the most meritorious 
spectral bands with the aid of sophisticated spec-
tral efficiency learning and inference, in order to 
control the transmission power, while relying on 
energy efficiency learning/inference and simul-
taneously adjusting the transmission protocols 
with the aid of quality of service learning/infer-
ence. Hence we briefly review the rudimentary 
concepts of machine learning and propose their 
employment in the compelling applications of 
5G networks, including cognitive radios, massive 
MIMOs, femto/small cells, heterogeneous net-
works, smart grid, energy harvesting, device-to-
device communications, and so on. Our goal is 
to assist the readers in refining the motivation, 
problem formulation, and methodology of pow-
erful machine learning algorithms in the context 
of future networks in order to tap into hitherto 
unexplored applications and services.

INTRODUCTION
Radical and sometime even un-orthodox next-gen-
eration networking concepts have received sub-
stantial attention both in the academic as well as 
industrial communities. One of their driving forces 
is that of providing unprecedented data rates for 
supporting radical new applications. Specifically, 
next-generation networks are expected to learn 
the diverse and colorful characteristics of both 
the users’ ambience as well as human behavior, 
in order to autonomously determine the opti-
mal system configurations. These smart mobile 
terminals have to rely on sophisticated learning 
and decision-making. Machine learning, as one 
of the most powerful artificial intelligence tools, 
constitutes a promising solution [1]. As shown in 
Fig. 1, we may envision an intelligent radio that 
is capable of autonomously accessing the avail-

able spectrum with the aid of learning, altruistical-
ly controlling transmission power for the sake of 
conserving energy as well as adjusting the trans-
mission protocols.

Machine learning has found wide-ranging 
applications in image/audio processing, finance 
and economics, social behavior analysis, project 
management, and so on [2]. Explicitly, a machine 
learns the execution of a particular task T, with 
the goal of maintaining a specific performance 
metric P, based on a particular experience E, 
where the system aims to reliably improve its 
performance P while executing task T, again by 
exploiting its experience E. Depending on how 
we specify T, P, and E, the learning might also be 
referred to as data mining, autonomous discov-
ery, database updating, programming by example, 
and so on [3]. Machine learning algorithms can 
be simply categorized as supervised and unsuper-
vised learning, where the adjectives “supervised/
unsupervised” indicate whether there are labeled 
samples in the database. Later, reinforcement 
learning emerged as a new category that was 
inspired by behavioral psychology. It is concerned 
with an agent’s certain form of reward/utility, who 
is connected to its environment via perception 
and action. The family of machine learning algo-
rithms can also be categorized based on their sim-
ilarity in terms of their functionality and structure, 
yielding regression algorithms, instance-based 
algorithms, regularization algorithms, decision tree 
algorithms, Bayesian algorithms, clustering algo-
rithms, association rule based learning algorithms, 
artificial neural networks, deep learning algo-
rithms, dimension reduction algorithms, ensem-
ble algorithms, and so on. In this article, we will 
introduce the basic concept of machine learning 
algorithms and the corresponding applications 
according to the category of supervised, unsuper-
vised, and reinforcement learning.

Machine learning can be widely used in model-
ing various technical problems of next-generation 
systems, such as large-scale MIMOs, device-to-
device (D2D) networks, heterogeneous networks 
constituted by femtocells and small cells, and so 
on. Figure 2 portrays the family-tree of machine 
learning techniques and their potential applica-
tions in 5G. Against this background, we embark 
on investigating the family of learning techniques. 
Specifically, in the following sections we consider 
supervised learning, unsupervised learning, and 
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reinforcement learning. Each section consists of 
several subsections, discussing specific learning 
models, such as regression models and the k-near-
est neighbor (KNN) algorithm, support vector 
machines (SVM) and Bayesian learning; k-means 
clustering, principal and independent component 
analysis; and partially observed Markov decision 
processes, Q-learning, and the multi-armed bandit 
technique. Each section commences with the intro-
duction of the learning model and its applications 
in 5G networks. Finally, our conclusions are drawn.

SUPERVISED LEARNING IN 
WIRELESS COMMUNICATIONS

REGRESSION MODELS, KNN AND SVM: 
MIMO CHANNEL AND ENERGY LEARNING

Models: Regression analysis relies on a statisti-
cal process for estimating the relationships among 
variables. The goal of regression analysis is to pre-
dict the value of one or more continuous-valued 
estimation targets, given the value of a D-dimen-
sional vector x of input variables. The estimation 
target is a function of the independent variables. 
In linear regression, the regression function is 
linear, while in logistic regression, it is a logistic 
function assuming a common sigmoid curve. The 
KNN and SVM algorithms are mainly utilized for 
classification of points/objects. In KNN, an object 
is classified into a specific category by a majority 
vote of the object’s neighbors, with the object 
being assigned to the class that is most common 
among its k nearest neighbors. The output may be 
constituted by a specific property of the object, 
such as for example the average of the values 
of its k nearest neighbors. By contrast, the SVM 
algorithm relies on nonlinear mapping, which 
transforms the original training data into a high-
er dimension where it becomes separable and 
then it searches for the optimal linear separating 
hyperplane that is capable of separating one class 
from another, again in this higher dimension. They 
correspond to non-linear classification methods 
relying on the family of kernel methods. It was 

shown that with the aid of an appropriate nonlin-
ear mapping to a sufficiently high dimension, the 
data from two classes can always be separated by 
a hyperplane [3 p. 21, 185, 239, 349] .

Applications: These models can be used for 
estimating or predicting radio parameters that are 
associated with specific users. For example, in 
massive MIMO systems associated with hundreds 
of antennas, both detection and channel estima-
tion lead to high-dimensional search-problems, 
which can be addressed by the above-mentioned 
learning models. In order to generalize the SVM 
function for employment in data classification 
problems, its hierarchical version, referred to as 
H-SVM, was proposed in [4], where each hierar-
chical level consisted of a finite number of SVM 
classifiers. This regime was used for the estima-
tion of the Gaussian channel’s noise level in a 
MIMO-aided wireless network having t transmit 
antennas and r receive antennas. By exploiting the 
training data, the H-SVM model was trained for 
the estimation of the channel noise statistics.

In heterogeneous networks constituted by 
diverse cells, handovers may be frequent, where 
both the KNN and SVM can be applied to finding 
the optimal handover solutions. At the application 
layer, these models can also be used for learning 
the mobile terminal’s specific usage pattern in 
diverse spatio-temporal and device contexts, as 
discussed in [5]. This may then be exploited for 
prediction of the configuration to be used in the 
location-specific interface. Given a set of contex-

FIGURE 1. Intelligent radio learning paradigm.
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tual input cues, machine learning algorithms are 
capable of exploiting the user context learned 
for the sake of dynamically classifying the cues 
into a system state for the sake of saving energy, 
while maintaining a high level of user satisfaction. 
Donohoo et al. [5] also conducted experiments 
using five real user profiles, including the user-lo-
cations and energy consumption, but their data 
is not accessible to the public. The experiment 
showed that up to 90 percent successful energy 
demand prediction is possible with the aid of the 
KNN algorithms.

BAYESIAN LEARNING: 
MASSIVE MIMO AND COGNITIVE RADIO

Models: The philosophy of Bayesian learning 
is to compute the a posteriori probability distribu-
tion of the target variables conditioned on its input 
signals and on all of the training instances. Some 
simple examples of generative models that may 
be learned with the aid of Bayesian techniques 
include, but are not limited to, the Gaussians mix-
ture model (GM), expectation maximization (EM), 
and hidden Markov models (HMM) [3 p. 445].

GM is a model where each data point belongs 
to one of several clusters or groups, and the data 
points within each cluster are Gaussian distributed.

EM is a generalization of maximum likelihood 
estimation, which iteratively finds the most likely 
solutions or parameters. It is characterized by two 
steps: the “E” step that chooses a function repre-
senting the lower bound of the likelihood, and the 
“M” step that finds the parameters maximizing 
the chosen function.

HMM is a tool designed for representing prob-
ability distributions of sequences of observations. 
It can be considered a generalization of a mix-
ture-based model, where the hidden variables, 
which control the specific mixture of the com-
ponent to be selected for each observation, are 
related to each other through a Markov process, 
rather than being independent of each other.

Applications: The Bayesian learning model 
may be readily invoked for spectral characteristic 
learning and estimation in next-generation net-
works. To address the pilot contamination prob-
lem encountered in massive MIMO systems, the 
authors of [6] estimated both the channel param-
eters of the desired links in a target cell as well as 
those of the interfering links of the adjacent cells, 
where channel estimation was carried out with 
the aid of sparse Bayesian learning techniques. 
Based on the observation of received signals, the 
channel component was first modeled by a GM, 

namely by a weighted sum of Gaussian distribu-
tions having different variances, and then estimat-
ed with the aid of the EM algorithm.

Another three closely related applications may 
be found in cognitive radio networks. In [7], a 
cooperative wideband spectrum sensing scheme 
based on the EM algorithm was proposed for the 
detection of a primary user (PU) supported by a 
multi-antenna assisted cognitive radio network. 
This iterative technique first created the log-like-
lihood function of both the unknown spectrum 
occupancy as well as of the channel information 
and of the noise in the “E” step. Then, it maxi-
mized the log-likelihood function for the sake of 
inferring the unknown information during the “M” 
step, which was carried out by jointly detecting 
both the PU signal as well as estimating the chan-
nel’s unknown frequency response and the noise 
variance of multiple subbands.

In contrast to [7], the authors in [8] construct-
ed a HMM relying on a two-state hidden Markov 
process, where the PUs are present or absent and 
a two-state observation space, indicating whether 
the PUs are present or absent. Furthermore, the EM 
algorithm was invoked for finding the true channel 
parameters, such as the sojourn time of the avail-
able channels, the inactive states of the PUs, and 
the PUs’ signal strength. Finally, the third application 
of Bayesian learning was advocated in [9], where a 
tomography model, belonging to the Bayesian infer-
ence framework, was proposed for conceiving and 
statistically characterizing a range of techniques that 
are capable of extracting the prevalent parameters 
and traffic/interference patterns for employment 
in cognitive radio networks at both the link layer 
and network layer. The parameters collected includ-
ed both the path-delay as well as the proportion 
of successful packet receptions, while the estimat-
ed parameter was the link’s successful transmission 
probability. The Bayesian estimators were derived 
for single/multiple transmissions in single/multi-
ple path scenarios. In Table 1, we summarize the 
basic characteristics and applications of supervised 
machine learning algorithms.

UNSUPERVISED LEARNING IN 
WIRELESS COMMUNICATIONS

K-MEANS CLUSTERING: 
HETEROGENEOUS NETWORKS

Models: K-means clustering aims for partition-
ing n observations into k clusters, where each 
observation belongs to the closest cluster. It 
defines the centroid of a cluster as the center of 

TABLE 1. Supervised machine learning algorithms.

Category Learning techniques Key characteristics Application in 5G

Supervised 
learning

Regression models
• Estimate the variables’ relationships  
• Linear and logistics regression

Energy learning [5]

K-nearest neighbor • Majority vote of neighbors Energy learning [5]

Support vector machines
• Non-linear mapping to high dimension  
• Separate hyperplane classification

MIMO channel learning [4]

Bayesian learning
• A posteriori distribution calculation  
• GM, EM, and HMM

• Massive MIMO learning [6]  
• Cognitive spectrum learning [7–9]

HMM is a tool designed 
for representing prob-
ability distributions of 
sequences of observa-
tions. It can be consid-
ered a generalization of 
a mixture-based model, 
where the hidden 
variables, which control 
the specific mixture 
of the component to 
be selected for each 
observation, are related 
to each other through a 
Markov process, rather 
than being independent 
of each other.
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gravity, that is, the mean value of the points within 
the cluster. The clustering algorithm proceeds in 
an iterative manner, where an object is assigned 
to the specific cluster whose centroid is nearest 
to the object based on the Euclidean distance 
‘similarity metric’, and then the in-cluster differ-
ences are minimized by iteratively updating the 
cluster-centroid, until ‘convergence’ is achieved. 
Explicitly, convergence is deemed to be achieved 
when the assignment becomes stable, that is, the 
clusters formed in the current round are the same as 
those formed in the previous round [3 p. 161, 317].

Applications: Clustering is a common problem 
in 5G networks, especially in heterogeneous sce-
narios associated with diverse cell sizes as well as 
WiFi and D2D networks. For example, the small 
cells have to be carefully clustered to avoid inter-
ference using coordinated multi-point transmis-
sion (CoMP), while the mobile users are clustered 
to obey an optimal offloading policy, the devices 
are clustered in D2D networks to achieve high 
energy efficiency, the WiFi users are clustered to 
maintain an optimal access point association, and 
so on. In [10], the authors considered a hybrid 
optical/wireless network scenario, in order to 
reduce the overall wireless tele-traffic by encour-
aging the utilization of the high-capacity optical 
infrastructure. A mixed integer programming 
(MIP) problem was formulated to jointly optimize 
both the gateway partitioning and the virtual-chan-
nel allocation based on classic k-means clustering, 
which was employed to partition the mesh access 
points (MAPs) into several groups. The proposed 
scheme commenced its operation from an initial 
gateway access point (GAP) set, which can be 
plucked by a random selection from the set of 
MAPs, or can be more astutely determined using 
a meritorious initialization criterion. Next, each 
MAP is assigned to its nearest GAP. If several eli-
gible GAPs are in the vicinity, then the specific 
GAP that has a readily available virtual channel 
is chosen. Finally, by using the classic k-means 
clustering algorithm, the MAPs are divided into k 
groups associated with the closest GAPs.

PRINCIPAL AND INDEPENDENT COMPONENT 
ANALYSIS: SMART GRID AND COGNITIVE RADIO

Models: Principal component analysis (PCA) 
transforms a set of potentially correlated variables 
into a set of uncorrelated variables, referred to 
as the principal components, where the number 
of principal components is less than or equal to 
the number of original variables. Basically, the 
first principal component has the largest possible 
variance (i.e., accounts for as much of the vari-
ability in the data as possible), and each succeed-
ing component in turn has the highest variance 
possible under the constraint that it is orthogonal 
to (i.e., uncorrelated with) the preceding compo-
nents. The principal components are orthogonal, 
because they are the eigenvectors of the covari-
ance matrix, which is symmetric. By contrast, inde-
pendent component analysis (ICA) is a statistical 
technique conceived to reveal hidden factors that 
underlie sets of random variables, measurements, 
or signals. In the model, the data variables are 
assumed to be linear mixtures of some unknown 
latent variables, and the mixing system is also 
unknown. The latent variables are assumed to be 

non-Gaussian and mutually independent, and they 
are referred to as the independent components 
of the observed data, which can be found by ICA 
[3 p. 115].

Applications: Both the PCA and ICA consti-
tute powerful statistical signal processing tech-
niques devised to recover statistically independent 
source signals from their linear mixtures. One 
of their major applications may be found in the 
area of anomaly-detection, fault-detection, and 
intrusion-detection problems of wireless networks, 
which rely on traffic monitoring. Furthermore, sim-
ilar problems may also be solved in sensor net-
works, mesh networks, and so on. They can also 
be invoked for the physical layer signal dimen-
sion reduction of massive MIMO systems or to 
classify the primary users’ behaviors in cognitive 
radio networks. As a further example, in [11] PCA 
and ICA were applied in a smart grid scenario to 
recover the simultaneous wireless transmissions 
of smart utility meters installed in each home. At 
the power utility station, it was required to sepa-
rate the signals received from all the smart meters 
before the signals can be decoded. The statistical 
properties of the signals were exploited to blindly 
separate them using ICA. This operation is capa-
ble of enhancing both the transmission efficiency 
by avoiding channel estimation in each frame, as 
well as data security by eliminating any wideband 
interference or jamming signals. More explicitly, 
a substantial security enhancement was achieved 
by a robust version of the PCA-based method, 
which exploited the sparse, low-rank nature of 
the auto-covariance matrices of the smart meter-
ing signal and of the wideband interferer, respec-
tively, in order to confidently separate them prior 
to ICA processing. Another pertinent example is 
found in cognitive radio scenarios, where the so 
called Boolean ICA relied on the Boolean mixing 
of OR, XOR, and other functions of binary signals 
[12]. It was also incorporated into the PU sepa-
ration problem often encountered in cognitive 
radio networks for the sake of distinguishing and 
characterizing the activities of PUs in the context 
of collaborative spectrum sensing. Furthermore, 
the observations of the secondary users (SUs) 
were modeled as Boolean OR mixtures of the 
underlying binary PU sources. An iterative algo-
rithm, called Binary ICA, was developed to deter-
mine the activities of the underlying latent signal 
sources, such as the PUs. It was demonstrated 
that given m monitors or SUs, the activities of up 
to (2m – 1) distinct PUs can be inferred. In Table 2, 
we summarize the basic characteristics and appli-
cations of unsupervised machine learning algo-
rithms.

REINFORCEMENT LEARNING IN 
WIRELESS COMMUNICATIONS

PARTIALLY OBSERVABLE MARKOV DECISION  
PROCESS: ENERGY HARVESTING

Models: Markov decision processes (MDPs) 
provide a mathematical framework for model-
ing decision making in specific situations, where 
the outcomes are partly random and partly under 
the control of a decision maker, as illustrated in 
Fig. 3a. At each time step, the process is in some 
state s, and the decision maker may opt for any 

Principal component 
analysis (PCA) 

transforms a set of 
potentially correlated 

variables into a set of 
uncorrelated variables 

referred to as the princi-
pal components, where 
the number of principal 

components is less than 
or equal to the number 

of original variables.



IEEE Wireless Communications • April 2017102

of the legitimate actions a that is available in state 
s. The process responds at the next time step by 
randomly moving into a new state s’, and giving 
the decision maker a corresponding reward Ua(s). 
The probability that the process moves into its 
new state s’ is influenced both by the specific 
action chosen, as well as by the system’s inherent 
transitions, formally described by the state transi-
tion probability Pa(s’|s, a). Given s and a, the state 
transition probability is conditionally independent 
of all previous states and actions, that is, the state 
transitions of an MDP process satisfy the funda-
mental Markov property. By contrast, a partially 
observable Markov decision process (POMDP) 
may be viewed as the generalization of a MDP, 
where the agent is unable to directly observe the 
underlying state transitions and hence only has 
partial knowledge, as shown in Fig. 3b. The agent 
has to keep track of both the probability distri-
bution of the legitimate states, based on a set of 
observations, as well as of the observation proba-
bilities and of the underlying MDP [3 p. 517].

Applications: The family of MDP/POMDP 
models constitutes ideal tools for supporting deci-
sion making in 5G networks, where the users may 
be regarded as agents and the network consti-
tutes the environment. There are usually three 
steps associated with modeling a problem using 
MDP. The first step is to specify the system’s state 
space and the decision maker’s action space, as 
well as verifying the Markov property. The sec-
ond step is that of constructing the state transition 
probabilities Pa(s’|s, a) formulated as the probabil-
ity of traversing from state s to s’under action a. The 
last step is to quantify both the decision maker’s 
immediate reward Ua(s) and its long-term reward 
using Bellman’s equation [13]. Then, a carefully 
constructed iterative algorithm may be conceived 
to identify the optimal action in each state.

Classical applications found in the literature 
include the network selection/association prob-
lems of heterogeneous networks (HetNets), chan-
nel sensing, and user access in cognitive radio 
networks, and so on. Furthermore, energy har-
vesting (EH) has also been extensively modeled 
using MDP/POMDP, where the limited battery 
and the time-variant channels are usually regard-
ed as the environment, while the users’ channel 
selection or battery utilization are usually con-
sidered as the actions. For instance, in [13] the 
transmission power control problems of EH sys-
tems were investigated using the POMDP model, 
where the state space was defined by including 
the battery state, the channel state, the packet 
transmission/reception states, and an action by 
the node, which corresponded to sending a pack-
et at a certain power level. The feedback messag-
es implicitly provided the EH system with partial 
channel state information (CSI), which resulted 
in the corresponding POMDP formulation. Since 
finding exact solutions to the POMDP tends to be 
computationally intractable [13], a pair of com-
putationally efficient suboptimal solutions, i.e. the 
maximum-likelihood heuristic policy and the vot-
ing heuristic policy, were explored.

Q-LEARNING: FEMTO/SMALL CELLS
Models: Q-learning may be invoked to find an 

optimal action policy for any given (finite) Mar-
kov decision process, especially when the system 
model is unknown, as shown in Fig. 3c. It is a 
model-free reinforcement learning technique and 
as such it can be used in conjunction with MDP 
models. In such a case, the Q-learning model is 
also comprised of an agent, of the states S and of 
a set of actions A per state. By executing an action 
in a specific state, the agent gleans a reward and 
the goal is to maximize its accumulated reward. 
Such a reward is illustrated by a Q-function, 
where “Q” is initialized to be an (arbitrary) fixed 
value. Then, “Q” is updated in an iterative manner 
after the agent carries out an action and observes 
the resultant reward as well as the associated new 
state at each time-instant [3 p. 517].

Applications: Q-learning has also been exten-
sively applied in heterogeneous networks, usual-
ly in conjunction with the aforementioned MDP 
models. In [14] the authors presented a hetero-
geneous fully distributed multi-objective strategy 
based on a reinforcement learning model con-

TABLE 2. Unsupervised machine learning algorithms.

Category Learning techniques Key characteristics Application in 5G

Unsupervised 
learning

K-means clustering • K partition clustering  
• Iterative updating algorithm

Heterogeneous 
networks [10]

PCA • Orthogonal transformation Smart grid [11]

ICA • Reveal hidden independent 
   factors

Spectrum learning in 
cognitive radio [12]

FIGURE 3. Illustration of reinforcement learning: a) Markov decision process; b) partially observed Markov decision process;  
c) Q-learning.
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structed for the self-configuration/optimization of 
femtocells. The model was supposed to solve both 
the resource allocation and interference coor-
dination problems in the downlink of femtocell 
networks. The main objectives of the learning pro-
cess are two-fold: first, to acquire spectrum allo-
cation awareness and to identify the availability of 
unused spectral slots for the provision of opportu-
nistic access; second, to select sub-channels from 
the available spectrum pool and to configure the 
terminals supported by femtocells to operate 
under carefully constructed restrictions to avoid 
interference and to meet the quality of service 
(QoS) requirements. Another example is consti-
tuted by dense small cell networks regarding their 
cell outage management and compensation [15]. 
The system’s state was constituted by the specific 
allocation of users to the resource blocks of small 
cells, as well as by the channel quality, while the 
actions were constituted by the downlink power 
control actions, with the rewards being quanti-
fied in terms of signal-to-interference-plus-noise 
ratio (SINR) improvement. It was demonstrated 
that the compensation strategy based on the rein-
forcement learning model attained an exceptional 
performance improvement.

MULTI-ARMED BANDITS: 
DEVICE-TO-DEVICE NETWORKS

Models: In practice, multi-armed bandits 
(MAB) have been used to model resource allo-
cation problems operating under a fixed budget 
by carefully proportioning resources among com-
peting projects, whose properties are only partial-
ly known at the time of resource allocation, but 
which may become better understood as time 
passes. Since the agent has no initial knowledge 
about the machines, the crucial trade-off they con-
front at each instance is between the “exploita-
tion” of the specific machine that has the highest 
expected payoff and the “exploration” required 
to glean more information about the expected 
payoffs of the other machines.

The MAB problem may also be extended into a 
multi-player, multi-armed bandit game (MP-MAB), 
where the reward gleaned by any player depends 
on the specific decisions of other players. The key 
idea of the proposed approach is to enable each 
user to forecast the future actions of its opponents 
based on public knowledge and to proceed by 
best responding to the predicted joint action pro-
file using some bandit strategy [3 p. 517].

Applications: The MAB and MP-MAB mod-
els, as a family of emerging signal processing 
tools, are capable of solving challenging resource 
allocation problems in wireless scenarios, where 
either the channel conditions or some other 
wireless environment parameters have to be 
“explored,” while the known channels also have 
to be “exploited” by a group of users. Gener-
ally, these models may be beneficially used in 
multi-player adaptive decision making problems, 
where selfish players infer an optimal joint action 
profile from their successive interactions with a 
dynamic environment, and finally settle at some 
equilibrium point. This problem has indeed been 
encountered in many wireless networking sce-
narios, with a compelling one being the channel 
selection problem of a distributed device-to-de-

vice (D2D) communication system integrated into 
a cellular network, and another one in the context 
of emerging next-generation networks [16]. The 
selfish D2D users aimed to optimize their own 
performance by camping on the vacant cellular 
channels, whose statistics were unknown to the 
users. This distributed channel selection problem 
was in harmony with the typical MP-MAB settings, 
and thus it was modeled as an MP-MAB game. 
Specifically, every D2D user was modeled as a 
player of the MP-MAB game, while the channels 
were regarded as arms and choosing a channel 
corresponds to pulling an arm. The authors pro-
posed a channel selection strategy consisting of 
two main blocks, namely the calibrated forecast-
ing and the no-regret bandit learning strategies. In 
Table 3, we summarize the rudimentary character-
istics and applications of reinforcement machine 
learning algorithms.

FUTURE RESEARCH AND CONCLUSIONS
A range of future research ideas on machine 
learning in 5G networks can be summarized as 
follows.

The family of supervised learning techniques 
relies on known models and labels that can sup-
port the estimation of unknown parameters. They 
can be utilized for massive MIMO channel esti-
mation and data detection, spectrum sensing and 
white space detection in cognitive radio, as well 
as for adaptive filtering in signal processing for 
5G communications. They can also be applied 
in higher-layer applications, such as inferring the 
mobile users’ locations and behaviors, which can 
assist the network operators to improve the quali-
ty of their services.

Unsupervised learning relies on the input data 
itself in a heuristic manner. It can be utilized for 
cell clustering in cooperative ultra-dense small-cell 
networks, for access point association in ubiqui-
tous WiFi networks, for heterogeneous base sta-
tion clustering in HetNets, and for load-balancing 
in HetNets. It can also be applied in anomaly/
fault/intrusion detection and for the users’ behav-
ior-classification.

Reinforcement learning relies on a dynamic 
iterative learning and decision-making process. 
It can be utilized for inferring the mobil users’ 
decision making under unknown network condi-
tions, for example during channel access under 
unknown channel availability conditions in spec-
trum sharing, for distributed resource allocation 
under unknown resource quality conditions in 
femto/small-cell networks, and base station asso-

TABLE 3. Reinforcement machine learning algorithms.

Category Learning techniques Key characteristics Application in 5G

Reinforcement 
learning

MDP/POMDP • Bellman equation
   maximization 
• Value iteration algorithm

Energy harvesting [13]

Q-learning • Unknown system
   transition model 
• Q-function maximization

Femto and small cells 
[14, 15]

Multi-armed bandit • Exploration vs.
   exploitation  
• Multi-armed bandit game

Device-to-device 
networks [16]
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ciation under the unknown energy status of the 
base stations in energy harvesting networks.

Furthermore, computational intelligence para-
digms, such as neural networks and neuro-fuzzy 
methods, swarm intelligence algorithms such 
as ant colony optimization, and evolutionary 
algorithms such as the competitive imperialist 
algorithm, may also be applied to improve the 
performance of 5G networks. Among those com-
pelling techniques, neural networks and deep 
learning have recently become particularly pop-
ular. Generally, a neural network consists of a 
number of neurons and weighted connections 
among them, where the neurons can be regarded 
as variables and the weights can be viewed as 
parameters. The network should be appropriately 
configured with the aid of learning techniques to 
ensure that the application of a set of inputs pro-
duces the desired set of outputs. Explicitly, this can 
be achieved by iteratively adjusting the weights of 
the existing connections among all neuron pairs 
with the aid of learning based on the labeled data 
for supervised learning or unlabeled data for unsu-
pervised learning. Neural networks have been 
widely utilized for spectral white state estimation 
[17], prediction [18], and handoff decisions [19] 
in cognitive radio networks. Note that the algo-
rithms introduced in this article are only limited 
samples of the machine learning field. There are 
many other algorithms that can also be applied 
to the next-generation networks. For example, the 
family of evolutionary algorithms, such as genetic 
algorithms can solve optimization problems by 
mimicking a natural selection process, which can 
be utilized to solve resource allocation problems 
in HetNets [20]. By contrast, machine learning 
relies on two phases, the training phase and the 
testing phase, where the training phase imposes 
a much higher complexity than the testing phase. 
Due to the energy constraints and computational 
complexity constraints of mobil terminals, it is rec-
ommended to only implement the testing phase 
on shirt-pocket-sized mobile terminals.

This article reviewed the benefits of artificial 
intelligence aided wireless systems equipped with 
machine learning. We introduced the major fami-
lies of machine learning algorithms and discussed 
their applications in the context of next-generation 
networks, including massive MIMOs, the smart 
grid, cognitive radios, heterogeneous networks, 
femto/small cells, D2D networks, and so on. The 
classes of supervised, unsupervised, and reinforce-
ment learning tools were investigated, along with 
the corresponding modeling methodology and 
possible future applications in 5G networks. In a 
nutshell, machine learning is an exiting area for 
artificial intelligence aided networking research!
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